Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage.

نویسندگان

  • Xin Xu
  • Zhaoyang Fan
  • Shujiang Ding
  • Demei Yu
  • Yaping Du
چکیده

MoS2 nanosheet@TiO2 nanotube hybrid nanostructures were successfully prepared by a facile two-step method: prefabrication of porous TiO2 nanotubes based on a sol-gel method template against polymeric nanotubes, and then assembly of MoS2 nanoclusters that consist of ultrathin nanosheets through a solvothermal process. These hybrid nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. When evaluated as an electrode material for lithium ion batteries, the results of the electrochemical test show that the unique MoS2 nanosheet@TiO2 nanotube hybrid nanostructures exhibit outstanding lithium storage performances with high specific capacity and excellent rate capability. The smart architecture of the MoS2 nanosheet@TiO2 nanotube hybrid nanostructures makes a prominent contribution to the excellent electrochemical performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities.

We report one dimensional (1D) MoS2 nanosheet/porous TiO2 nanowire hybrid nanostructures synthesized by a simple hydrothermal method, leading to an enhanced specific surface area (66 m(2) g(-1)). These 1D hybrid nanostructures as co-catalysts exhibit high activity in visible light photocatalytic hydrogen evolution reaction (HER) with an enhanced hydrogen generation rate of 16.7 mmol h(-1) g(-1).

متن کامل

High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries.

We report a facile approach to prepare MoS2 nanosheet coated TiO2 nanobelts. The TiO2@MoS2 structure exhibits a reversible capacity of 710 mA h g(-1) at 100 mA g(-1) after 100 cycles with highly stable capacity retention, and bears good rate capability with a reversible capacity of 417 mA h g(-1) at 1000 mA g(-1).

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Fabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage

In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...

متن کامل

Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes.

We demonstrate the fabrication of three-dimensional freestanding foams of hybrid graphene-single-walled carbon nanotube nanomanufactured materials with reversible capacities of 2640 mA h g(-1) at 0.186 A g(-1) and 236 mA h g(-1) at 27.9 A g(-1). The Li storage behavior of this material is compared against other nanostructures in similar flexible foam platforms including graphene, ultra-thin gra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2014